A new discovery in regenerative medicine
Date:
September 16, 2020
Source:
Monash University
Summary:
Researchers have made an unexpected world-first stem cell discovery
that may lead to new treatments for placenta complications during
pregnancy.
FULL STORY ==========================================================================
An international collaboration involving Monash University and Duke-NUS researchers have made an unexpected world-first stem cell discovery that
may lead to new treatments for placenta complications during pregnancy.
========================================================================== While it is widely known that adult skin cells can be reprogrammed into
cells similar to human embryonic stem cells that can then be used to
develop tissue from human organs -- known as induced pluripotent stem
cells (iPSCs) -- the same process could not create placenta tissue.
iPSCs opened up the potential for personalised cell therapies and new opportunities for regenerative medicine, safe drug testing and toxicity assessments, however little was known about exactly how they were made.
An international team led by ARC Future Fellow Professor Jose Polo from
Monash University's Biomedicine Discovery Institute and the Australian
Research Medicine Institute, together with Assistant Professor Owen
Rackham from Duke- NUS in Singapore, examined the molecular changes
the adult skin cells went through to become iPSCs. It was during the
study of this process that they discovered a new way to create induced trophoblast stem cells (iTSCs) that can be used to make placenta cells.
This exciting discovery, also involving the expertise of three first
authors, Dr. Xiaodong Liu, Dr. John Ouyang and Dr. Fernando Rossello, will enable further research into new treatments for placenta complications and
the measurement of drug toxicity to placenta cells, which has implications during pregnancy.
"This is really important because iPSCs cannot give rise to placenta, thus
all the advances in disease modelling and cell therapy that iPSCs have
brought about did not translate to the placenta," Professor Polo said.
"When I started my PhD five years ago our goal was to understand the
nuts and bolts of how iPSCs are made, however along the way we also
discovered how to make iTSCs," said Dr Liu.
"This discovery will provide the capacity to model human placenta in
vitro and enable a pathway to future cell therapies," commented Dr Ouyang.
"This study demonstrates how by successfully combining both cutting edge experimental and computational tools, basic science leads to unexpected discoveries that can be transformative," Professor Rackham said.
Professors Polo and Rackham said many other groups from Australian and international universities contributed to the study over the years,
making it a truly international endeavour.
========================================================================== Story Source: Materials provided by Monash_University. Note: Content
may be edited for style and length.
========================================================================== Journal Reference:
1. Liu, X., Ouyang, J.F., Rossello, F.J. et al. Reprogramming roadmap
reveals route to human induced trophoblast stem cells. Nature,
2020 DOI: 10.1038/s41586-020-2734-6 ==========================================================================
Link to news story:
https://www.sciencedaily.com/releases/2020/09/200916113540.htm
--- up 3 weeks, 2 days, 6 hours, 50 minutes
* Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1337:3/111)