Wearable exosuit that lessens muscle fatigue could redesign the future
of work
Date:
September 29, 2020
Source:
Vanderbilt University
Summary:
A new clothing-like exoskeleton can reduce back muscle fatigue
and providing needed physical relief to material handlers, medical
professionals and frontline workers.
FULL STORY ========================================================================== Vanderbilt University engineers have determined that their back-assist
exosuit, a clothing-like device that supports human movement and
posture, can reduce fatigue by an average of 29-47 percent in lower back muscles. The exosuit's functionality presents a promising new development
for individuals who work in physically demanding fields and are at risk
for back pain, including medical professionals and frontline workers.
==========================================================================
The article describing the experiment and findings, "Low-Profile Elastic Exosuit Reduces Back Muscle Fatigue," was published in the Nature journal Scientific Reports on September 29.
The research, led by Assistant Professor of Mechanical Engineering
Karl Zelik and recent Ph.D. graduate and primary author Erik Lamers,
used surface electromyography techniques to measure changes in low back
muscle fatigue in male and female participants, who were given physical
tasks to perform both with and without the exosuit.
The wearable technology developed by Zelik's team may conjure images of
Iron Man's suit, but it does not rely on motors or batteries. Instead,
the low- profile, elastic exosuit applies assistive forces that cooperate
with the low back extensor muscles, to relieve strain on the muscles
and spine, and to help reduce injury risks.
This study showed that wearing the exosuit made holding a 35-pound weight
(the average weight of a 4-year-old child) less tiring on the back than
holding a 24-pound weight (the average weight of an 18-month-old baby)
without the exosuit.
"These findings show how exosuits could provide valuable back relief to frontline and essential workers who have been taking a physical toll and supporting all of us throughout this pandemic. What we learned has the potential to shape the biomechanical and industrial standards of future wearable technologies," said Zelik, who holds secondary appointments in biomedical engineering and in physical medicine and rehabilitation.
The work also demonstrated a sharpened understanding of how the latissimus dorsi muscles (the "lats") -- those that adduct, extend and medially
rotate the shoulder joint -- affect low back mechanics. While previous
research has shown that the lats generally do not contribute much to
supporting the low back, the investigators discovered that, as people
get tired, they may suddenly recruit the lats to offload the main back
extensor muscles to a significant degree.
"The lats act sort of like an exosuit. When a person's low back muscles
become over-strained and fatigued, they summon extra assistance from
their lats to relieve this back strain and fatigue. The elastic bands in
our exosuit work the same way to help sustain endurance and strength,"
said Lamers, a National Science Foundation Graduate Research Fellow
who worked in Vanderbilt's Center for Rehabilitation Engineering and
Assistive Technology.
Zelik, a former collegiate athlete who competed in the long jump and
triple jump, knows firsthand how intensive physical activity can fatigue
the body. He also understands the importance of ensuring that the exosuit
and its utility are built with inclusive design practices. "Wearables are
going to change the way we work and live, and we want to improve safety,
health and well-being for everyone. One of the critical challenges moving forward will be to ensure that all wearable technology is developed to
serve and protect both women and men.
We are thrilled that this research helped lead to the first commercial
exosuit or exoskeleton designed with both male- and female-fits,"
Zelik said.
========================================================================== Story Source: Materials provided by Vanderbilt_University. Original
written by Marissa Shapiro. Note: Content may be edited for style
and length.
========================================================================== Journal Reference:
1. Erik P. Lamers, Juliana C. Soltys, Keaton L. Scherpereel, Aaron
J. Yang,
Karl E. Zelik. Low-profile elastic exosuit reduces back muscle
fatigue.
Scientific Reports, 2020; 10 (1) DOI: 10.1038/s41598-020-72531-4 ==========================================================================
Link to news story:
https://www.sciencedaily.com/releases/2020/09/200929123514.htm
--- up 5 weeks, 1 day, 6 hours, 50 minutes
* Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1337:3/111)