
Iron Spring Software Self-defining Data
Technical note

Syntax A self-defining structure is one that
contains information describing the lengths
and bounds of some of its subordinate
elements (and therefore their locations).

PL/I implements self-defining based
structures using the REFER option in
the declaration. REFER specifies a

field in the structure to hold the length and bound information, called a REFER
object. At run-time, the generated code uses the value of the refer object to
access the data. These values are initially set from specifications in the
declaration when the structure is allocated, and may be modified by the user’s
program thereafter, as long as this does not cause the structure to be larger than
initially allocated.

Self-defining structures are an IBM extension to PL/I, and are not specified in
either the full PL/I or the “subset” standards.

Syntax

The general syntax for a REFER option declaration is:

expression REFER (variable)

expression is the declared maximum length or bound, used when the structure is
allocated, and variable is name of the REFER object.

An example of a complete declaration is:

DECLARE init_array_size FIXED BINARY(7) INITIAL(5);
DECLARE 1 structure BASED,
 2 size_of_array FIXED BINARY(31),
 2 variable_elem (init_array_size
REFER(size_of_array)) CHARACTER(8);

(A constant could be used in place of init_array_size in this declaration.)

When this structure is allocated, storage for five (init_array_size) occurrences of
variable_elem will be reserved, and size_of_array will be initialized to five. During
execution the program may set size_of_array to any value not exceeding five,
and store that many values in variable_elem. If structure is written to a file, only

Iron Spring Software Version 1.0.0 Jan 2023 1

Table of Contents
Syntax...1
Restrictions...2
Tips...2
Sample Program.................................4
Sample Output....................................7

Iron Spring Software Self-defining Data
Technical note

the number of elements specified are written. When the structure is subsequently
read, size_of_array will be set to indicate the number originally written.

The syntax is similar for string lengths, for example:

… 2 variable_elem CHARACTER(init_array_size REFER(size_of_array));

Multiple REFER options may be specified for an element, for example specifying
lower and upper bounds and string length, and multiple elements can be
declared with the REFER option. The same REFER object may be specified for
multiple elements (assuming the values are the same, naturally).

Changing the value of a REFER object will “remap” the structure, and possibly
change the locations of some elements. This will not cause any current data to
be moved.

Restrictions

• All REFER objects must be at logical level two in the structure, that is not part of
a minor structure.

• REFER objects cannot be array elements.

• All REFER objects must precede the first element declared with a REFER option.

• All must be FIXED BINARY(31,0).
[IBM PL/I requires FIXED BINARY but allows any precision]

Tips

• Self-defining structures involve substantial overhead. Avoid them if other
solutions are available.

• When declaring bound information, no check is made that the upper bound is
greater than the lower bound.

• The refer objects should never be set such that the current size of the structure
would exceed its initially declared size.

• Files read or written should be declared ENV(VARLS RECSIZE(n)), where n is at least
the length of the longest possible record plus 2 bytes.

• Only direct assignments to REFER objects are recognized. For example, the
following might not function correctly.:

DECLARE p POINTER;
DECLARE fb FIXED BINARY(31) BASED;

Iron Spring Software Version 1.0.0 Jan 2023 2

Iron Spring Software Self-defining Data
Technical note

p = ADDR(some_refer_object);
…
p->fb = foo;

Do not use builtin functions such as PLIFILL or PLIMOVE to make assignments
to the structure.

Declaring the structure with the ABNORMAL attribute will allow this to work
correctly, at the cost of significantly more overhead.

Iron Spring Software Version 1.0.0 Jan 2023 3

Iron Spring Software Self-defining Data
Technical note

Sample Program
 /* refsamp */
 /***/
 /* */
 /* Module: refsamp */
 /* Peter Flass -- Jan 2023 */
 /* */
 /* Function: Sample program for self-defining structures */
 /* with file I/O. */
 /* */
 /* Program allocates a self-defining structure */
 /* and creates and writes records of different */
 /* lengths. The data is then read back and */
 /* printed. */
 /* */
 /* Usage: refsamp */
 /* */
 /* Dependencies: */
 /* */
 /* */
 /***/
refsamp: proc options(main);
 dcl (p,q) ptr;
 dcl n fixed bin(31);
 dcl i fixed bin(31);
 dcl 1 struc based(p),
 5 char_occ fixed bin(31),
 5 char char(64 refer(char_occ));
 dcl vfile file env(varls recsize(80));
 dcl eof bit(1) init('0'b);

 /*-------------------------*/
 /* Test Data */
 /*-------------------------*/
 dcl test_string (8)char(16) varying static init(
 'String One', 'Str 2', 'Three', 'String 4',
 'St 5', 'Str 6', 'String SEVEN', 'Last');

 on endfile(vfile) eof='1'b;

Iron Spring Software Version 1.0.0 Jan 2023 4

Iron Spring Software Self-defining Data
Technical note

 put skip list('refsamp: Test self-defining structures');
 alloc struc set(p); /* Allocate the structure */
 q = p; /* Save addr for later */
 put skip edit('allocated size',stg(p→struc))(a,p'zz9');
 open file(vfile) output title('ReferTest.dat');

 put skip(2) edit('Writing',hbound(test_string),' records')
 (a,p'zz9',a);
 /*-------------------------*/
 /* Write records */
 /*-------------------------*/
 do n=1 to hbound(test_string);
 p->char_occ = length(test_string(n));
 p->char = test_string(n);
 i = cstg(p→struc);
 put skip edit('writing',i,heximage(p,i))(a,p'zz9',x(1),a);
 write file(vfile) from(p→struc);
 end; /* do n */
 put skip list('all records written');
 close file(vfile);

 /*-------------------------*/
 /* Reread and print records*/
 /* using READ SET() */
 /*-------------------------*/
 open file(vfile) input title('ReferTest.dat');
 put skip(2) list('trying READ SET()');
 read file(vfile) set(p);
 do while(^eof);
 put skip edit(length(p->char),': "',p→char,'"')(p'zzz9',a,a,a);
 read file(vfile) set(p);
 end; /* do while */
 close file(vfile);

 /*-------------------------*/
 /* Reread and print records*/
 /* using READ INTO() */
 /*-------------------------*/
 p = q; /* Res addr after read(set) */
 eof='0'b; /* Reset EOF */

Iron Spring Software Version 1.0.0 Jan 2023 5

Iron Spring Software Self-defining Data
Technical note

 open file(vfile) input title('ReferTest.dat');
 put skip(2) list('trying READ INTO()');
 read file(vfile) into(struc);
 do while(^eof);
 put skip edit(length(p->char),': "',p→char,'"')(p'zzz9',a,a,a);
 read file(vfile) into(struc);
 end; /* do while */
 close file(vfile);

 put skip(2) list('refsamp test complete');
 end refsamp;

Iron Spring Software Version 1.0.0 Jan 2023 6

Iron Spring Software Self-defining Data
Technical note

Sample Output

Here is the printed output of the sample program, followed by a hexadecimal
dump of the file created.

./refsamp

refsamp: Test self-defining structures
allocated size 68

Writing 8 records
writing 14 0A000000537472696E67204F6E65
writing 9 050000005374722032
writing 9 050000005468726565
writing 12 08000000537472696E672034
writing 8 0400000053742035
writing 9 050000005374722036
writing 16 0C000000537472696E6720534556454E
writing 8 040000004C617374
all records written

trying READ SET()
 10: "String One"
 5: "Str 2"
 5: "Three"
 8: "String 4"
 4: "St 5"
 5: "Str 6"
 12: "String SEVEN"
 4: "Last"

trying READ INTO()
 10: "String One"
 5: "Str 2"
 5: "Three"
 8: "String 4"
 4: "St 5"
 5: "Str 6"
 12: "String SEVEN"
 4: "Last"

hexdump -C ReferTest.dat
00000000 0e 00 0a 00 00 00 53 74 72 69 6e 67 20 4f 6e 65 |......String One|
00000010 09 00 05 00 00 00 53 74 72 20 32 09 00 05 00 00 |......Str 2.....|
00000020 00 54 68 72 65 65 0c 00 08 00 00 00 53 74 72 69 |.Three......Stri|

Iron Spring Software Version 1.0.0 Jan 2023 7

Iron Spring Software Self-defining Data
Technical note

00000030 6e 67 20 34 08 00 04 00 00 00 53 74 20 35 09 00 |ng 4......St 5..|
00000040 05 00 00 00 53 74 72 20 36 10 00 0c 00 00 00 53 |....Str 6......S|
00000050 74 72 69 6e 67 20 53 45 56 45 4e 08 00 04 00 00 |tring SEVEN.....|
00000060 00 4c 61 73 74 |.Last|

Iron Spring Software Version 1.0.0 Jan 2023 8

	Syntax
	Restrictions
	Tips
	Sample Program
	Sample Output

