• Bats offer clues to treating COVID-19

    From ScienceDaily@1337:3/111 to All on Thu Jul 9 21:30:30 2020
    Bats offer clues to treating COVID-19
    To combat COVID-19, we need to regulate our immune systems to resemble
    those of bats

    Date:
    July 9, 2020
    Source:
    University of Rochester
    Summary:
    Bats carry many viruses, including COVID-19, without becoming ill.

    Biologists are studying the immune system of bats to find potential
    ways to 'mimic' that system in humans.



    FULL STORY ==========================================================================
    Bats are often considered patient zero for many deadly viruses affecting humans, including Ebola, rabies, and, most recently, the SARS-CoV-2
    strain of virus that causes coronavirus.


    ========================================================================== Although humans experience adverse symptoms when afflicted with
    these pathogens, bats are remarkably able to tolerate viruses, and, additionally, live much longer than similar-sized land mammals.

    What are the secrets to their longevity and virus resistance? According
    to researchers at the University of Rochester, bats' longevity and
    capacity to tolerate viruses may stem from their ability to control inflammation, which is a hallmark of disease and aging. In a review
    article published in the journal Cell Metabolism, the researchers
    -- including Rochester biology professors Vera Gorbunova and Andrei
    Seluanov -- outline the mechanisms underlying bats' unique abilities
    and how these mechanisms may hold clues to developing new treatments
    for diseases in humans.

    Why are bats 'immune' to viruses? The idea for the paper came about
    when Gorbunova and Seluanov, who are married, were in Singapore in March
    before COVID-19 travel bans began. When the virus started to spread
    and Singapore went into lockdown, they were quarantined at the home of
    their colleague Brian Kennedy, director of the Centre for Healthy Aging
    at the National University of Singapore and co-author of the paper.



    ==========================================================================
    The three scientists, all experts on longevity in mammals, got to talking
    about bats. SARS-CoV-2 is believed to have originated in bats before the
    virus was transmitted to humans. Although bats were carriers, they seemed
    to be unaffected by the virus. Another perplexing factor: generally, a
    species' lifespan correlates with its body mass; the smaller a species,
    the shorter its lifespan, and vice versa. Many bat species, however,
    have lifespans of 30 to 40 years, which is impressive for their size.

    "We've been interested in longevity and disease resistance in bats
    for a while, but we didn't have the time to sit and think about
    it," says Gorbunova, the Doris Johns Cherry Professor of Biology at
    Rochester. "Being in quarantine gave us time to discuss this, and we
    realized there may be a very strong connection between bats' resistance to infectious diseases and their longevity. We also realized that bats can
    provide clues to human therapies used to fight diseases." While there
    have been studies on the immune responses of bats and studies of bats' longevity, until their article, "no one has combined these two phenomena," Seluanov says.

    Gorbunova and Seluanov have studied longevity and disease resistance in
    other exceptionally long-lived animals, including naked mole rats. One
    common theme in their research is that inflammation is a hallmark of the
    aging process and age-related diseases, including cancer, Alzheimer's,
    and cardiovascular disease. Viruses, including COVID-19, are one factor
    that can trigger inflammation.

    "With COVID-19, the inflammation goes haywire, and it may be the
    inflammatory response that is killing the patient, more so than the
    virus itself," Gorbunova says. "The human immune system works like that:
    once we get infected, our body sounds an alarm and we develop a fever and inflammation. The goal is to kill the virus and fight infection, but it
    can also be a detrimental response as our bodies overreact to the threat."
    Not so with bats. Unlike humans, bats have developed specific mechanisms
    that reduce viral replication and also dampen the immune response to a
    virus. The result is a beneficial balance: their immune systems control
    viruses but at the same time, do not mount a strong inflammatory response.



    ==========================================================================
    Why did bats acquire a tolerance for diseases? According to the
    researchers, there are several factors that may contribute to bats
    having evolved to fight viruses and live long lives. One factor may be
    driven by flight. Bats are the only mammals with the ability to fly,
    which requires that they adapt to rapid increases in body temperature,
    sudden surges in metabolism, and molecular damage. These adaptations
    may also assist in disease resistance.

    Another factor may be their environment. Many species of bats live in
    large, dense colonies, and hang close together on cave ceilings or in
    trees. Those conditions are ideal for transmitting viruses and other
    pathogens.

    "Bats are constantly exposed to viruses," Seluanov says. "They are
    always flying out and bringing back something new to the cave or nest,
    and they transfer the virus because they live in such close proximity
    to each other." Because bats are constantly exposed to viruses, their
    immune systems are in a perpetual arms race with pathogens: a pathogen
    will enter the organism, the immune system will evolve a mechanism to
    combat the pathogen, the pathogen will evolve again, and so on.

    "Usually the strongest driver of new traits in evolution is an arms race
    with pathogens," Gorbunova says. "Dealing with all of these viruses
    may be shaping bats' immunity and longevity." Can humans develop
    the same disease resistance as bats? That's not an invitation for
    humans to toss their masks and crowd together in restaurants and movie theaters. Evolution takes place over thousands of years, rather than a
    few months. It has only been in recent history that a majority of the
    human population has begun living in close proximity in cities. Or that technology has enabled rapid mobility and travel across continents and
    around the globe. While humans may be developing social habits that
    parallel those of bats, we have not yet evolved bats' sophisticated
    mechanisms to combat viruses as they emerge and swiftly spread.

    "The consequences may be that our bodies experience more inflammation," Gorbunova says.

    The researchers also recognize that aging seems to play an adverse role
    in humans' reactions to COVID-19.

    "COVID-19 has such a different pathogenesis in older people," Gorbunova
    says.

    "Age is one of the most critical factors between living and dying. We have
    to treat aging as a whole process instead of just treating individual symptoms." The researchers anticipate that studying bats' immune
    systems will provide new targets for human therapies to fight diseases
    and aging. For example, bats have mutated or completely eliminated
    several genes involved in inflammation; scientists can develop drugs to
    inhibit these genes in humans. Gorbunova and Seluanov hope to start a
    new research program at Rochester to work toward that goal.

    "Humans have two possible strategies if we want to prevent inflammation,
    live longer, and avoid the deadly effects of diseases like COVID-19,"
    Gorbunova says. "One would be to not be exposed to any viruses, but
    that's not practical.

    The second would be to regulate our immune system more like a bat."

    ========================================================================== Story Source: Materials provided by University_of_Rochester. Note:
    Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Vera Gorbunova, Andrei Seluanov, Brian K. Kennedy. The World
    Goes Bats:
    Living Longer and Tolerating Viruses. Cell Metabolism, 2020; 32
    (1): 31 DOI: 10.1016/j.cmet.2020.06.013 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2020/07/200709135631.htm

    --- up 24 weeks, 2 days, 2 hours, 34 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1337:3/111)