• Safeguarding of key DNA sensor in innate

    From ScienceDaily@1337:3/111 to All on Thu Sep 10 21:30:38 2020
    Safeguarding of key DNA sensor in innate immune system

    Date:
    September 10, 2020
    Source:
    University of North Carolina Health Care
    Summary:
    New research reveals in detail how the nucleosomes inside our cells
    block cGAS from unintentionally triggering the body's innate immune
    response to our own DNA.



    FULL STORY ========================================================================== UNC-Chapel Hill researchers have, for the first time, determined the
    high- resolution structure of a key DNA-sensing protein in the innate
    immune system called cGAS while it is bound to the nucleosome -- the all-important unit of DNA packaging inside a cell's nucleus.


    ==========================================================================
    This research, published in Science, reveals in detail how the nucleosomes inside our cells block cGAS from unintentionally triggering the body's
    innate immune response to our own DNA. The work was led by Qi Zhang, PhD, associate professor of biochemistry and biophysics at the UNC School of Medicine, and Robert McGinty, MD, PhD, assistant professor of chemical
    biology and medicinal chemistry at the UNC Eshelman School of Pharmacy.

    "Detecting and responding to foreign DNA from bacterial and viral
    pathogens is one of the most fundamental mechanisms for host defense,"
    said Zhang, co-senior author. "A deeper understanding of functions and regulations of this important DNA sensor will have profound impacts
    on both basic research and translational development of cGAS-targeted therapeutics crucial to the betterment of human health." McGinty,
    co-senior author, said, "This work was enabled by recent advances in cryo-electron microscopy technology that allows scientists, like those
    on our team, to observe the protein machines inside our cells with unprecedented clarity. By seeing how these proteins function normally,
    we can gain insights into how to manipulate their functions to treat
    diseases." In the mammalian innate immune system, the protein cyclic
    GMP-AMP synthase (cGAS) detects foreign or damaged "self" DNAs. Upon
    DNA detection, cGAS synthesizes cyclic GMP-AMP (cGAMP), the second
    messenger molecule that activates the cGAS-STING signaling pathway to
    fight infections, inflammatory diseases, and cancers.

    Because cGAS is a "universal" DNA sensor, it must be regulated to
    differentiate pathogenic DNA from the body's own healthy DNA to avoid
    any unintended immune responses. Previous research has shown that cGAS
    is enriched inside the nucleus where our genomic DNA is stored, but it
    remains a mystery as how cGAS ignores our own healthy DNA.

    Using the UNC School of Medicine state-of-the-art Cryo-Electron Microscopy
    Core Facility, which was established in 2019, the Zhang and McGinty labs determined a 3.3AA-resolution cryo-EM structure of cGAS in complex with
    the nucleosome.

    The structure shows that cGAS employs two conserved amino acids to
    anchor to a negatively charged patch on the nucleosome surface. These protein-protein interactions allow the nucleosome to occupy a critical DNA sensing surface on cGAS and prevent cGAS from entering its functionally
    active DNA-bound state.

    Together with mutagenesis and functional assays, this study provides
    a near- atomic resolution depiction of how cGAS maintains the resting, inhibited state in the nucleus.

    "These findings reshape the current paradigm of cGAS regulation and
    exemplify the role of the nucleosome in regulating diverse protein
    functions," said McGinty, who holds a joint faculty appointment at the
    UNC School of Medicine.

    Zhang added, "Biomedical scientists will be able to apply our research to fields such as immunology, cancer biology, and gene regulation, as well
    as to drug discovery for infections, inflammatory diseases, and cancers."

    ========================================================================== Story Source: Materials provided by
    University_of_North_Carolina_Health_Care. Note: Content may be edited
    for style and length.


    ========================================================================== Journal Reference:
    1. Joshua A. Boyer, Cathy J. Spangler, Joshua D. Strauss, Andrew
    P. Cesmat,
    Pengda Liu, Robert K. Mcginty, Qi Zhang. Structural basis
    of nucleosome- dependent cGAS inhibition. Science, 2020 DOI:
    10.1126/science.abd0609 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2020/09/200910171818.htm

    --- up 2 weeks, 3 days, 6 hours, 50 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1337:3/111)