• Scientists expose fascinating 'compartme

    From ScienceDaily@1337:3/111 to All on Thu Jul 30 21:30:24 2020
    Scientists expose fascinating 'compartments' in bacteria

    Date:
    July 30, 2020
    Source:
    Monash University
    Summary:
    A new review article casts light on organelles, the internal
    compartments in bacterial cells that house and support functions
    essential for their survival and growth.



    FULL STORY ==========================================================================
    A review paper by Monash Biomedicine Discovery Institute (BDI), published
    in the high-impact journal Nature Reviews Microbiology, casts light on organelles, the internal compartments in bacterial cells that house and
    support functions essential for their survival and growth.


    ==========================================================================
    The BDI's Professor Trevor Lithgow and Associate Professor Chris Greening, experts in bacterial cell biology and physiology, were invited to review
    the available scientific literature worldwide to consolidate the latest knowledge of organelles.

    "There was an age-old truism until recently that bacteria were simply a
    bag of enzymes, the simplest type of cells," Professor Lithgow said. "New developments in nanoscale imaging have shown that internal compartments -- organelles - - make them very complex," he said.

    Cryoelectron microscopy and super-resolution microscopy have allowed
    scientists to fathom the workings of bacterial organelles, which typically
    have a diameter 10,000 times smaller than a pinhead. The BDI has been at
    the forefront in Australia in adopting and developing the use of these technologies, Professor Lithgow said.

    "It's been a rewarding experience doing this scholarly review and being
    able to showcase the broad swathe of work that demonstrates the complexity
    of bacterial cells," he said.

    Organelles enable bacteria to do extraordinary things. They help bacteria photosynthesise in dimly lit environments, break down toxic compounds
    like rocket fuel or even orientate themselves relative to the Earth's
    magnetic field by lining up magnetic iron particles. Some bacteria use
    gas collected within organelles to control buoyancy to let them rise or
    go deeper in water, allowing optimal access to light and nutrients for
    growth and division.

    Exploring and understanding the intricacies of bacterial cells is not
    only important for scientific knowledge, but also for biotechnological applications and for addressing global issues of human health.

    "Organelles enable many bacteria to perform functions useful for us,
    from supporting basic ecosystem function to enabling all sorts of biotechnological advances. But a few pathogens use organelles to cause disease," Associate Professor Greening said. "The deadly pathogen that
    causes tuberculosis, for example, scavenges fatty molecules from our
    own bodies and stores them as energy reserves in organelles, helping
    the pathogen to persist for years in our lungs, compromising treatment
    and making the emergence of drug resistance likely." Countering
    drug-resistant infections are key 21st century problems for humans,
    Professor Lithgow said. "In these times of COVID-19 the death tolls we're seeing for viral infections are terrible, but the projection is that
    by 2050 at least 22,000 Australians (and 10 million people worldwide)
    will die every year due to infections caused by drug-resistant bacteria,"
    he said.


    ========================================================================== Story Source: Materials provided by Monash_University. Note: Content
    may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Chris Greening, Trevor Lithgow. Formation and function of bacterial
    organelles. Nature Reviews Microbiology, 2020; DOI:
    10.1038/s41579-020- 0413-0 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2020/07/200730141357.htm

    --- up 2 weeks, 1 day, 1 hour, 54 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1337:3/111)