Smartwatch tracks medication levels to personalize treatments
Advance could help doctors choose the right drug at the right dose for
the right person
Date:
August 7, 2020
Source:
University of California - Los Angeles
Summary:
Engineers have demonstrated that drug levels inside the body can
be tracked in real time using a custom smartwatch that analyzes
the chemicals found in sweat. This wearable technology could be
incorporated into a more personalized approach to medicine --
where an ideal drug and dosages can be tailored to an individual.
FULL STORY ========================================================================== Engineers at the UCLA Samueli School of Engineering and their colleagues
at Stanford School of Medicine have demonstrated that drug levels
inside the body can be tracked in real time using a custom smartwatch
that analyzes the chemicals found in sweat. This wearable technology
could be incorporated into a more personalized approach to medicine --
where an ideal drug and dosages can be tailored to an individual.
==========================================================================
A study detailing the research was published in Proceedings of the
National Academy of Sciences.
In general, medications are prescribed with a 'one-size-fits-all' approach
- - drugs are designed and prescribed based on statistical averages of
their effectiveness. There are guidelines for factors such as patients'
weight and age. But in addition to these basic differentiators, our body chemistry constantly changes -- depending on what we eat and how much
we've exercised.
And on top of these dynamic factors, every individual's genetic makeup is unique and hence responses to medications can vary. This affects how fast
drugs are absorbed, take effect and get eliminated from an individual.
According to the researchers, current efforts to personalize the drug
dosage rely heavily on repeated blood draws at the hospital. The samples
are then sent out to be analyzed in central labs. These solutions are inconvenient, time- consuming, invasive and expensive. That is why they
are only performed on a small subset of patients and on rare occasions.
"We wanted to create a wearable technology that can track the profile of medication inside the body continuously and non-invasively," said study
leader Sam Emaminejad, an assistant professor of electrical and computer engineering at UCLA. "This way, we can tailor the optimal dosage and
timing of the intake for each individual. And using this personalization approach, we can improve the efficacy of the therapeutic treatments."
Because of their small molecular sizes, many different kinds of drugs
end up in sweat, where their concentrations closely reflect the drugs' circulating levels. That's why the researchers created a smartwatch,
equipped with a sensor that analyzes the sampled tiny droplets of sweat.
The team's experiment tracked the effect of acetaminophen, a common
over-the- counter pain medication, on individuals over the period of a
few hours. First, the researchers stimulated sweat glands on the wrist by applying a small electric current, the same technique that Emaminejad's research group demonstrated in previous wearable technologies.
This allowed the researchers to detect changes in body chemistry,
without needing subjects to work up a sweat by exercising. As different
drugs each have their own unique electrochemical signature, the sensor
can be designed to look for the level of a particular medication at any
given time.
"This technology is a game-changer and a significant step forward
for realizing personalized medicine," said study co-author Ronald
W. Davis, a professor of biochemistry and genetics at Stanford Medical
School. "Emerging pharmacogenomic solutions, which allow us to select
drugs based on the genetic makeup of individuals, have already shown to
be useful in improving the efficacy of treatments. So, in combination
with our wearable solution, which helps us to optimize the drug dosages
for each individual, we can now truly personalize our approaches to pharmacotherapy." What makes this study significant is the ability to accurately detect a drug's unique electrochemical signal, against the
backdrop of signals from many other molecules that may be circulating
in the body and in higher concentrations than the drug, said the study's
lead author Shuyu Lin, a UCLA doctoral student and member of Emaminejad's Interconnected and Integrated Bioelectronics Lab (I^2BL). Emaminejad
added that the technology could be adapted to monitor medication adherence
and drug abuse.
"This could be particularly important for individuals with mental
health issues, where doctors prescribe them prolonged pharmacotherapy treatments," he said. " The patients could benefit from such easy-to-use, noninvasive monitoring tools, while doctors could see how the medication
is doing in the patient."
========================================================================== Story Source: Materials provided by
University_of_California_-_Los_Angeles. Note: Content may be edited for
style and length.
========================================================================== Journal Reference:
1. Shuyu Lin, Wenzhuo Yu, Bo Wang, Yichao Zhao, Ke En, Jialun Zhu,
Xuanbing
Cheng, Crystal Zhou, Haisong Lin, Zhaoqing Wang, Hannaneh Hojaiji,
Christopher Yeung, Carlos Milla, Ronald W. Davis, Sam Emaminejad.
Noninvasive wearable electroactive pharmaceutical monitoring for
personalized therapeutics. Proceedings of the National Academy of
Sciences, 2020; 202009979 DOI: 10.1073/pnas.2009979117 ==========================================================================
Link to news story:
https://www.sciencedaily.com/releases/2020/08/200807093741.htm
--- up 3 weeks, 2 days, 1 hour, 55 minutes
* Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1337:3/111)