Predicting computational power of early quantum computers
Date:
August 24, 2020
Source:
University of Sussex
Summary:
Quantum physicists have developed an algorithm which helps early
quantum computers to perform calculations most efficiently.
FULL STORY ========================================================================== Quantum physicists at the University of Sussex have created an algorithm
that speeds up the rate of calculations in the early quantum computers
which are currently being developed. They have created a new way to
route the ions -- or charged atoms -- around the quantum computer to
boost the efficiency of the calculations.
==========================================================================
The Sussex team have shown how calculations in such a quantum computer can
be done most efficiently, by using their new 'routing algorithm'. Their
paper "Efficient Qubit Routing for a Globally Connected Trapped
Ion Quantum Computer" is published in the journal Advanced Quantum Technologies.
The team working on this project was led by Professor Winfried Hensinger
and included Mark Webber, Dr Steven Herbert and Dr Sebastian Weidt. The scientists have created a new algorithm which regulates traffic within the quantum computer just like managing traffic in a busy city. In the trapped
ion design the qubits can be physically transported over long distances,
so they can easily interact with other qubits. Their new algorithm means
that data can flow through the quantum computer without any 'traffic
jams'. This in turn gives rise to a more powerful quantum computer.
Quantum computers are expected to be able to solve problems that are
too complex for classical computers. Quantum computers use quantum
bits (qubits) to process information in a new and powerful way. The
particular quantum computer architecture the team analysed first is a
'trapped ion' quantum computer, consisting of silicon microchips with individual charged atoms, or ions, levitating above the surface of the
chip. These ions are used to store data, where each ion holds one quantum
bit of information. Executing calculations on such a quantum computer
involves moving around ions, similar to playing a game of Pacman, and
the faster and more efficiently the data (the ions) can be moved around,
the more powerful the quantum computer will be.
In the global race to build a large scale quantum computer there are
two leading methods, 'superconducting' devices which groups such as
IBM and Google focus on, and 'trapped ion' devices which are used by
the University of Sussex's Ion Quantum Technology group, and the newly
emerged company Universal Quantum, among others.
Superconducting quantum computers have stationary qubits which are
typically only able to interact with qubits that are immediately next
to each other.
Calculations involving distant qubits are done by communicating through a
chain of adjacent qubits, a process similar to the telephone game (also referred to as 'Chinese Whispers'), where information is whispered from
one person to another along a line of people. In the same way as in the telephone game, the information tends to get more corrupted the longer
the chain is. Indeed, the researchers found that this process will limit
the computational power of superconducting quantum computers.
In contrast, by deploying their new routing algorithm for their trapped
ion architecture, the Sussex scientists have discovered that their quantum computing approach can achieve an impressive level of computational power.
'Quantum Volume' is a new benchmark which is being used to compare the computational power of near term quantum computers. They were able to
use Quantum Volume to compare their architecture against a model for superconducting qubits, where they assumed similar levels of errors for
both approaches. They found that the trapped-ion approach performed consistently better than the superconducting qubit approach, because
their routing algorithm essentially allows qubits to directly interact
with many more qubits, which in turn gives rise to a higher expected computational power.
Mark Webber, a doctoral researcher in the Sussex Centre for Quantum technologies, at the University of Sussex, said: "We can now predict the computational power of the quantum computers we are constructing. Our
study indicates a fundamental advantage for trapped ion devices, and the
new routing algorithm will allow us to maximize the performance of early quantum computers." Professor Hensinger, director of the Sussex Centre
for Quantum Technologies at the University of Sussex said: "Indeed, this
work is yet another stepping stone towards building practical quantum
computers that can solve real world problems." Professor Winfried
Hensinger and Dr Sebastian Weidt have recently launched their spin-out
company Universal Quantum which aims to build the world's first large
scale quantum computer. It has attracted backing from some of the
world's most powerful tech investors. The team was the first to publish
a blue-print for how to build a large scale trapped ion quantum computer
in 2017.
========================================================================== Story Source: Materials provided by University_of_Sussex. Original
written by Anna Ford.
Note: Content may be edited for style and length.
========================================================================== Journal Reference:
1. Mark Webber, Steven Herbert, Sebastian Weidt, Winfried K. Hensinger.
Efficient Qubit Routing for a Globally Connected Trapped Ion
Quantum Computer. Advanced Quantum Technologies, 2020; 3 (8):
2000027 DOI: 10.1002/qute.202000027 ==========================================================================
Link to news story:
https://www.sciencedaily.com/releases/2020/08/200824105907.htm
--- up 6 hours, 50 minutes
* Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1337:3/111)