• New nano drug candidate kills aggressive

    From ScienceDaily@1337:3/111 to All on Mon Jul 20 21:30:22 2020
    New nano drug candidate kills aggressive breast cancer cells

    Date:
    July 20, 2020
    Source:
    University of Arkansas
    Summary:
    Researchers have developed a new drug candidate that kills triple
    negative breast cancer cells. The discovery will help clinicians
    target breast cancer cells directly, while avoiding the adverse,
    toxic side effects of chemotherapy.



    FULL STORY ========================================================================== Researchers at the University of Arkansas have developed a new nano drug candidate that kills triple negative breast cancer cells.


    ========================================================================== Triple negative breast cancer is one of the most aggressive and fatal
    types of breast cancer. The research will help clinicians target breast
    cancer cells directly, while avoiding the adverse, toxic side effects
    of chemotherapy.

    Their study was published in June issue of Advanced Therapeutics.

    Researchers led by Hassan Beyzavi, assistant professor in the Department
    of Chemistry and Biochemistry, linked a new class of nanomaterials,
    called metal- organic frameworks, with the ligands of an already-developed photodynamic therapy drug to create a nano-porous material that targets
    and kills tumor cells without creating toxicity for normal cells.

    Metal-organic frameworks are an emerging class of nanomaterials designed
    for targeted drug delivery. Ligands are molecules that bind to other
    molecules.

    "With the exception of skin cancers, breast cancer is the most common
    form of cancer in American women," said Beyzavi. "As we know, thousands
    of women die from breast cancer each year. Patients with triple negative
    cells are especially vulnerable, because of the toxic side effects of
    the only approved treatment for this type of cancer. We've addressed this problem by developing a co-formulation that targets cancer cells and has
    no effect on healthy cells." Researchers in Beyzavi's laboratory focus
    on developing new, targeted photodynamic therapy drugs. As an alternative
    to chemotherapy -- and with significantly fewer side effects -- targeted photodynamic therapy, or PDT, is a noninvasive approach that relies on
    a photosensitizer that, upon irradiation by light, generates so-called
    toxic reactive oxygen species, which kill cancer cells. In recent years,
    PDT has garnered attention because of its ability to treat tumors without surgery, chemotherapy or radiation.



    ========================================================================== Beyzavi's laboratory has specialized in integrating nanomaterials, such as metal-organic frameworks, with PDT and other and therapies. Metal-organic frameworks significantly enhance the effectiveness of PDT.

    Doctoral student Yoshie Sakamaki from Beyzavi's laboratrory prepared the nanomaterials and then bio-conjugated them with ligands of the PDT drug
    to create nanoporous materials that specifically targeted and killed
    tumor cells with no toxicity in normal cells.

    In addition to cancer treatment, this novel drug delivery system could
    also be used with magnetic resonance imaging (MRI) or fluorescence
    imaging, which can track the drug in the body and monitor the progress
    of cancer treatment.

    This collaborative project also included contributions from U of A
    research groups through Julie Stenken, professor of analytical chemistry; Yuchun Du, associate professor of biological sciences; and Jin-Woo Kim, professor of biological and agricultural engineering.

    The American Cancer Society estimated 268,600 new cases of invasive
    breast cancer in 2019 and 41,760 deaths. Currently there are more than
    3.1 million breast cancer survivors in the United States. Since 2007,
    breast cancer death rates have been steady in women younger than 50 but
    have continued to decrease in older women. This decrease is believed to
    be the result of earlier detection and better treatments.

    Triple negative breast cancer is aggressive and lacks estrogen receptors, progesterone receptors and human epidermal growth factor receptor 2,
    which means it cannot be treated with receptor-targeted therapy. It is difficult to treat with existing chemotherapy and often requires surgery because it quickly metastasizes throughout the body.

    Cytotoxic chemotherapy is the only approved treatment for this type of
    breast cancer. More than 80% of women with triple negative breast cancer
    are treated with chemotherapy regimens that include anthracyclines,
    such as doxorubicin, which can cause cardiotoxicity as a serious side
    effect. Furthermore, chemotherapy treatment of breast cancer cell lines
    using either 5-FU, cisplatin, paclitaxel, doxorubicin or etoposide have
    shown multi-drug resistance.

    Beyzavi joined the University of Arkansas in 2017 after serving as
    a research associate at Harvard University. Before that he was a
    postdoctoral awardee at Northwestern University under the co-guidance
    of Nobel Laureate Sir Fraser Stoddart.


    ========================================================================== Story Source: Materials provided by University_of_Arkansas. Original
    written by Matt McGowan.

    Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Yoshie Sakamaki, John Ozdemir, Alda Diaz Perez, Zachary Heidrick,
    Olivia
    Watson, Miu Tsuji, Christopher Salmon, Joseph Batta‐Mpouma,
    Anthony Azzun, Valerie Lomonte, Yuchun Du, Julie Stenken,
    Jin‐Woo Kim, M.

    Hassan Beyzavi. Maltotriose Conjugated Metal-Organic Frameworks for
    Selective Targeting and Photodynamic Therapy of Triple Negative
    Breast Cancer Cells and Tumor Associated Macrophages. Advanced
    Therapeutics, 2020; 2000029 DOI: 10.1002/adtp.202000029 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2020/07/200720093303.htm

    --- up 5 days, 1 hour, 54 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1337:3/111)