A cheaper, faster COVID-19 test
Date:
September 23, 2020
Source:
Karolinska Institutet
Summary:
Researchers have developed a method for fast, cheap, yet accurate
testing for COVID-19 infection. The method simplifies and frees
the testing from expensive reaction steps, enabling upscaling of
the diagnostics.
FULL STORY ========================================================================== Researchers at Karolinska Institutet have developed a method for fast,
cheap, yet accurate testing for COVID-19 infection. The method simplifies
and frees the testing from expensive reaction steps, enabling upscaling
of the diagnostics. This makes the method particularly attractive for
places and situations with limited resources. It is equally interesting
for repeated testing and for moving resources from expensive diagnostics
to other parts of the care chain. The study is published in Nature Communications.
==========================================================================
"We started working on the issue of developing a readily available testing method as soon as we saw the developments in Asia and southern Europe,
and before the situation reached crisis point in Sweden," says principal investigator Bjorn Reinius, research leader at the Department of Medical Biochemistry and Biophysics at Karolinska Institutet. "Our method was effectively finished already by the end of April, and we then made all
the data freely available online." The spread of the new coronavirus at
the end of 2019 in China's Wuhan region quickly escalated into a global pandemic. The relatively high transmission rate and the large number
of asymptomatic infections led to a huge, world-wide need for fast,
affordable and effective diagnostic tests that could be performed in
clinical as well as non-clinical settings.
Established diagnostic tests for COVID-19 are based on the detection
of viral RNA in patient samples, such as nasal and throat swabs, from
which RNA molecules must then be extracted and purified. RNA purification constitutes a major bottleneck for the testing process, requiring a great
deal of equipment and logistics as well as expensive chemical compounds.
Making the current methods simpler without markedly compromising
their accuracy means that more and faster testing can be carried out,
which would help to reduce the rate of transmission and facilitate earlier-stage care.
The cross-departmental research group at Karolinska Institutet has now developed methods that completely circumvent the RNA-extraction procedure,
so that once the patient sample has been inactivated by means of heating, rendering the virus particles no longer infectious, it can pass straight
to the diagnostic reaction that detects the presence of the virus.
According to the researchers, the most important keys to the method's
success are both the above virus inactivation procedure and a new
formulation of the solution used to collect and transport the sample
material taken from the patients.
"By replacing the collection buffer with simple and inexpensive buffer formulations, we can enable viral detection with high sensitivity
directly from the original clinical sample, without any intermediate
steps," says Dr Reinius.
Institutions and research groups around the world have shown great
interest in the method since a first version of the scientific article
was published on the preprint server medRxiv. The article was read more
than 15,000 times even before it was peer-reviewed by other researchers
in the field and officially published in Nature Communications.
"Thanks to the low cost and the simplicity of the method, it becomes a particularly attractive option at sites and in situations with limited resources but a pressing need to test for COVID-19," he says and adds:
"I would certainly like to see that this test used in Sweden too, for
example for cheap periodic testing of asymptomatic people to eliminate
the spread of infection." The study was supported by grants from the Wallenberg Foundations via the SciLifeLab/KAW National COVID-19 Research Program and from the Ragnar Soderberg Foundation.
========================================================================== Story Source: Materials provided by Karolinska_Institutet. Note: Content
may be edited for style and length.
========================================================================== Journal Reference:
1. Ioanna Smyrlaki, Martin Ekman, Antonio Lentini, Nuno Rufino
de Sousa,
Natali Papanicolaou, Martin Vondracek, Johan Aarum, Hamzah Safari,
Shaman Muradrasoli, Antonio Gigliotti Rothfuchs, Jan Albert,
Bjo"rn Ho"gberg, Bjo"rn Reinius. Massive and rapid COVID-19
testing is feasible by extraction-free SARS-CoV-2 RT-PCR. Nature
Communications, 2020; 11 (1) DOI: 10.1038/s41467-020-18611-5 ==========================================================================
Link to news story:
https://www.sciencedaily.com/releases/2020/09/200923090416.htm
--- up 4 weeks, 2 days, 6 hours, 50 minutes
* Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1337:3/111)