• Some 'inert' drug ingredients may be bio

    From ScienceDaily@1337:3/111 to All on Thu Jul 23 21:30:32 2020
    Some 'inert' drug ingredients may be biologically active
    Comprehensive laboratory study flags drug components in need of more
    rigorous review

    Date:
    July 23, 2020
    Source:
    University of California - San Francisco
    Summary:
    Some supposedly inert ingredients in common drugs -- such as dyes
    and preservatives -- may potentially be biologically active and
    could lead to unanticipated side effects, according to a preliminary
    new study.



    FULL STORY ==========================================================================
    Some supposedly inert ingredients in common drugs -- such as dyes and preservatives -- may potentially be biologically active and could lead
    to unanticipated side effects, according to a preliminary new study by researchers from the UC San Francisco School of Pharmacy and the Novartis Institutes for BioMedical Research (NIBR).


    ==========================================================================
    Most medications include only a relatively small amount of their active pharmaceutical ingredient by mass (for instance, the acetaminophen in
    Tylenol and other medications). The rest of any given pill, liquid or injectable can be composed of ingredients including preservatives, dyes, antimicrobials and other compounds known as excipients. These ingredients
    play critical roles in making sure a drug's active ingredient is delivered safely and effectively, as well as conferring important qualities like
    shelf stability and the ability to quickly distinguish pills by color.

    Excipients are generally accepted to be biologically inactive based on
    their long history of use, or because they don't produce any obvious
    toxicity in animal studies. But few studies have looked for more subtle
    effects of long- term exposure to these compounds or how they might
    interact in people who take multiple different medicines that include
    these ingredients.

    Researchers Brian Shoichet, PhD, of the UCSF Department of Pharmaceutical Chemistry and Laszlo Urban, PhD, Global Head of Preclinical Safety
    Profiling at NIBR, had begun to wonder about whether all of these
    substances were really inert, and joined forces to investigate them. They
    began the work in 2017 with a database documenting most readily accessible
    pure excipients, which the UCSF group had compiled in an easy-to-use
    excipients browser, itself drawing on a more specialized FDA inactive ingredients database (IID), with support from the FDA-funded UCSF-Stanford Center of Excellence in Regulatory Science and Innovation (CERSI).

    As reported in their new study, published July 23, 2020 online in Science,
    the researchers have now systematically screened 3296 excipients contained
    in the inactive ingredient database, and identified 38 excipient molecules
    that interact with 134 important human enzymes and receptors.

    The research team emphasizes that their study, which did not look for
    actual effects on human patients, is only intended to flag molecules
    with the potential to pose negative health effects, and the examples
    they list will need to be further studied to understand how they might contribute to side effects of drugs in which they are found.



    ========================================================================== "These data illustrate that while many excipient molecules are in
    fact inert, a good number may have previously unappreciated effects on
    human proteins known to play an important role in health and disease,"
    Shoichet said. "We demonstrate an approach by which drug makers could
    in the future evaluate the excipients used in their formulations, and
    replace biologically active compounds with equivalent molecules that are
    truly inactive." The team used a couple of different approaches. At
    UCSF, Shoichet's team computationally examined excipient molecules
    that physically resemble the known biological binding partners of 3117 different human proteins in the public ChEMBL database. The team then computationally pared down 2 million possible interactions of these
    excipients and human target proteins to 20,000 chemically plausible interactions. Based on visual inspection, the researchers identified
    a subset of 69 excipients with highest likelihood of interacting with
    human target proteins, and tested these interactions experimentally
    in laboratory dishes, in collaboration with the groups of Bryan Roth,
    PhD, a professor of pharmacology at the University of North Carolina,
    Chapel Hill, and Kathy Giacomini, PhD, a professor of bioengineering at
    UCSF and co-director of the UCSF-Stanford CERSI center.

    These experiments identified 25 different biological interactions
    involving 19 excipient molecules and 12 pharmacologically important
    human proteins.

    In a complementary set of experiments at NIBR, the researchers screened
    73 commonly used excipients against a panel of human protein targets
    involved in drug-induced toxicity and regularly used to test drug
    candidates for safety.

    They identified an additional 109 interactions between 32 excipients
    and these human safety targets.

    "Our study was meant to expand on anecdotal evidence that excipients
    may be the culprits of unexpected physiological effects seen in certain
    drug formulations," said study lead author Joshua Pottel, PhD, a former postdoctoral researcher in the Shoichet lab who is now President
    and CEO of Montreal-based Molecular Forecaster Inc. "It was not so
    surprising to find new properties of understudied compounds that have
    been grandfathered in as 'inactive' for decades, but it was surprising
    to see how potent some of these molecules are, especially considering
    the fairly high quantities sometimes used in typical drug formulations."
    The biologically active excipients the study identified in laboratory
    dishes merit further study in animal models to establish whether any
    of them may in fact produce unwanted side effects in human patients,
    the authors said. Many should be readily interchangeable with truly
    inert excipients of similar function, they said, but for others, new replacement compounds may need to be developed.

    "After decades with little innovation in how drugs are formulated,
    we see this as an opportunity for a public-private partnership between academic, regulatory, and pharmaceutical communities to seek new and
    better excipients, and we demonstrate an approach to doing so," Shoichet
    said. "Given the challenge this work presents to the pharmaceutical
    status quo, we are grateful for the forward-thinking support the project
    has received primarily from the FDA and through our collaboration with Novartis, in addition to the National Institutes of Health."

    ========================================================================== Story Source: Materials provided by
    University_of_California_-_San_Francisco. Original written by Nicholas
    Weiler. Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Joshua Pottel, Duncan Armstrong, Ling Zou, Alexander Fekete, Xi-Ping
    Huang, Hayarpi Torosyan, Dallas Bednarczyk, Steven Whitebread,
    Barun Bhhatarai, Guiqing Liang, Hong Jin, S. Nassir Ghaemi,
    Samuel Slocum, Katalin V. Lukacs, John J. Irwin, Ellen L. Berg,
    Kathleen M. Giacomini, Bryan L. Roth, Brian K. Shoichet, Laszlo
    Urban. The activities of drug inactive ingredients on biological
    targets. Science, 2020 DOI: 10.1126/ science.aaz9906 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2020/07/200723172210.htm

    --- up 1 week, 1 day, 1 hour, 55 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1337:3/111)