World's fastest UV camera
Date:
October 8, 2020
Source:
Institut national de la recherche scientifique - INRS
Summary:
Researchers have developed the fastest camera in the world capable
of recording photons in the ultraviolet (UV) range in real time.
FULL STORY ==========================================================================
The team of Professor Jinyang Liang, a specialist in ultrafast imaging
at the Institut national de la recherche scientifique (INRS), in
collaboration with an international team of researchers, has developed
the fastest camera in the world capable of recording photons in the
ultraviolet (UV) range in real time.
This original research is featured on the front cover of the 10th issue
of the journal Laser & Photonics Reviews.
========================================================================== Compressed ultrafast photography (CUP) captures the entire process in
real time and unparalleled resolution with just one click. The spatial
and temporal information is first compressed into an image and then,
using a reconstruction algorithm, it is converted into a video.
Developing a Compact Instrument for UV Until now, this technique was
limited to visible and near-infrared wavelengths, and thus to a specific category of physical events. "Many phenomena that occur on very short
time scales also take place on a very small spatial scale. To see them,
you need to sense shorter wavelengths. Doing this in the UV or even
X-ray ranges is a remarkable step toward this goal," says Jinyang Liang,
who led the study.
To record in this new range of wavelengths and to develop the technique
into a user-friendly product, researchers designed a compact UV-CUP
system with Christian-Yves Co^te' of Axis Photonique Inc. via an academia-industry collaboration. The new system features a patterned photocathode, which is used to simultaneously detect and encode "black
light." "Like a standard camera, our technology is passive. It does
not produce light; it receives it. Therefore, our photocathode had to
be sensitive to the photons emitted as UV light. This design makes our technique a stand-alone system that can be easily integrated into various experimental platforms," says Jinyang Liang, who has been contributing
to the development of CUP since his postdoctorate.
Liang worked with Franc,ois Le'gare', also an INRS professor, to generate
and take images of UV pulses at the Advanced Laser Light Source (ALLS) laboratory.
"The outstanding research environment at the E'nergie Mate'riaux Te'le'communications Research Centre of INRS is very helpful. It is
so much more efficient when all necessary design, manufacturing, and characterization capabilities are available in the same building."
Dividing up the Reconstruction Problem "Taking the picture is only
the first half of the job," says Jinyang Liang. "It also has to be reconstructed." To do this, the researchers developed a new algorithm,
more efficient than standard algorithms, via their collaboration with
Boston University. Its strength comes from a division of tasks. "Rather
than solve the reconstruction problem as a lump, the algorithm divides
the reconstruction into smaller problems that it tackles individually," explains Professor Liang.
With the innovations in both hardware and software, UV-CUP has an imaging
speed of 0.5 trillion frames per second. It produces videos with 1500
frames in large format. As a light-speed imager, UV-CUP sees flying UV
photons in real time.
"It always fascinates me when you can watch the fastest object in the
universe in such great detail," says Yingming Lai, a Master's student
at INRS and the first author of the article.
The device developed through this international collaboration will be
sent to the research laboratory SOLEIL Synchrotron in France to visualize physical phenomena. It could capture laser-plasma generation, a phenomenon
that is essential for deducing certain properties of materials, and UV fluorescence, which is important in medical imaging to identify biomarkers linked to diseases.
========================================================================== Story Source: Materials provided by Institut_national_de_la_recherche_scientifique_-_INRS.
Original written by Audrey-Maude Ve'zina. Note: Content may be edited
for style and length.
========================================================================== Journal Reference:
1. Yingming Lai, Yujia Xue, Christian‐Yves Co^te', Xianglei Liu,
Antoine Larame'e, Nicolas Jaouen, Franc,ois Le'gare', Lei Tian,
Jinyang Liang. Single‐Shot Ultraviolet Compressed Ultrafast
Photography.
Laser & Photonics Reviews, 2020; 14 (10): 2000122 DOI: 10.1002/
lpor.202000122 ==========================================================================
Link to news story:
https://www.sciencedaily.com/releases/2020/10/201008083750.htm
--- up 6 weeks, 3 days, 6 hours, 50 minutes
* Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1337:3/111)