Metal-breathing bacteria could transform electronics, biosensors, and
more
Study of bacterium links biology, materials science, and electrical engineering
Date:
July 28, 2020
Source:
Rensselaer Polytechnic Institute
Summary:
When the Shewanella oneidensis bacterium 'breathes' in certain
metal and sulfur compounds anaerobically, the way an aerobic
organism would process oxygen, it produces materials that could be
used to enhance electronics, electrochemical energy storage, and
drug-delivery devices. The ability of this bacterium to produce
molybdenum disulfide -- a material that is able to transfer
electrons easily, like graphene -- is the focus of new research.
FULL STORY ==========================================================================
When the Shewanella oneidensis bacterium "breathes" in certain metal and
sulfur compounds anaerobically, the way an aerobic organism would process oxygen, it produces materials that could be used to enhance electronics, electrochemical energy storage, and drug-delivery devices.
==========================================================================
The ability of this bacterium to produce molybdenum disulfide -- a
material that is able to transfer electrons easily, like graphene -- is
the focus of research published in Biointerphases by a team of engineers
from Rensselaer Polytechnic Institute.
"This has some serious potential if we can understand this process
and control aspects of how the bacteria are making these and other
materials," said Shayla Sawyer, an associate professor of electrical,
computer, and systems engineering at Rensselaer.
The research was led by James Rees, who is currently a postdoctoral
research associate under the Sawyer group in close partnership and with
the support of the Jefferson Project at Lake George -- a collaboration
between Rensselaer, IBM Research, and The FUND for Lake George that is pioneering a new model for environmental monitoring and prediction. This research is an important step toward developing a new generation of
nutrient sensors that can be deployed on lakes and other water bodies.
"We find bacteria that are adapted to specific geochemical or biochemical environments can create, in some cases, very interesting and novel
materials," Rees said. "We are trying to bring that into the electrical engineering world." Rees conducted this pioneering work as a graduate
student, co-advised by Sawyer and Yuri Gorby, the third author on this
paper. Compared with other anaerobic bacteria, one thing that makes
Shewanella oneidensis particularly unusual and interesting is that it
produces nanowires capable of transferring electrons.
"That lends itself to connecting to electronic devices that have already
been made," Sawyer said. "So, it's the interface between the living world
and the humanmade world that is fascinating." Sawyer and Rees also found
that, because their electronic signatures can be mapped and monitored, bacterial biofilms could also act as an effective nutrient sensor that
could provide Jefferson Project researchers with key information about
the health of an aquatic ecosystem like Lake George.
"This groundbreaking work using bacterial biofilms represents the
potential for an exciting new generation of 'living sensors,' which
would completely transform our ability to detect excess nutrients in
water bodies in real-time.
This is critical to understanding and mitigating harmful algal blooms
and other important water quality issues around the world," said Rick
Relyea, director of the Jefferson Project.
Sawyer and Rees plan to continue exploring how to optimally develop this bacterium to harness its wide-ranging potential applications.
"We sometimes get the question with the research: Why bacteria? Or,
why bring microbiology into materials science?" Rees said. "Biology has
had such a long run of inventing materials through trial and error. The composites and novel structures invented by human scientists are almost
a drop in the bucket compared to what biology has been able to do."
========================================================================== Story Source: Materials provided by
Rensselaer_Polytechnic_Institute. Original written by Torie Wells. Note: Content may be edited for style and length.
========================================================================== Journal Reference:
1. James D. Rees, Yuri A. Gorby, Shayla M. Sawyer. Synthesis and
characterization of molybdenum disulfide nanoparticles in Shewanella
oneidensis MR-1 biofilms. Biointerphases, 2020; 15 (4): 041006
DOI: 10.1116/6.0000199 ==========================================================================
Link to news story:
https://www.sciencedaily.com/releases/2020/07/200728130831.htm
--- up 1 week, 6 days, 1 hour, 55 minutes
* Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1337:3/111)